>百科大全> 列表
对数公式推论的推导过程
时间:2025-04-11 05:36:30
答案

用的是极限中的一个结论:x趋近于0时ln(1+x)和x是等价无穷小

h趋近于0时,ln(1+h/x)和h/x是等价无穷小。

例如:

对数函数

的推导需要利用反函数

的求导法则

指数函数

的求导,定义法:

f(x)=a^x

f'(x)=lim(detaX->0)[(f(x+detaX)-f(x))/detax]=lim(detaX->0)[(a^(x+detaX)-a^x/)detax]=(a^x).........

(x)=lim(h->0)[f(x+h)-f(x)]/h

=lim(h->0)[loga(x+h)-logax]/h

=lim(h->0)1/hloga[(x+h)/x]

=1/xIna

实数域

在实数域中,真数

式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数

),底数

则要大于0且不为1。

对数函数的底数为什么要大于0且不为1,在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)。

推荐
Copyright © 2025 坨坨知识网 |  琼ICP备2022020623号 |  网站地图